Document Type

Article

Publication Date

2-2023

Publication Source

Renewable & Sustainable Energy Reviews

Abstract

The industrial sector consumes about one-third of global energy, making them a frequent target for energy use reduction. Variation in energy usage is observed with weather conditions, as space conditioning needs to change seasonally, and with production, energy-using equipment is directly tied to production rate. Previous models were based on engineering analyses of equipment and relied on site-specific details. Others consisted of single -variable regressors that did not capture all contributions to energy consumption. New modeling techniques could be applied to rectify these weaknesses. Applying data from 45 different manufacturing plants obtained from industrial energy audits, a supervised machine-learning model is developed to create a general predictor for industrial building energy consumption. The model uses features of air enthalpy, solar radiation, and wind speed to predict weather-dependency; motor, steam, and compressed air system parameters to capture support equipment contributions; and operating schedule, production rate, number of employees, and floor area to determine production-dependency. Results showed that a model that used a linear regressor over a transformed feature space could outperform a support vector machine and utilize features more representative of physical systems. Using informed parameters to build a reliable predictor will more accurately characterize a manufacturing facility's energy savings opportunities.

ISBN/ISSN

1364-0321

Document Version

Published Version

Comments

This open-access article is provided for download in compliance with the publisher’s policy on self-archiving. To view the version of record, use the DOI: https://doi.org/10.1016/j.rser.2022.113045

Publisher

Pergamon-Elsevier Science Ltd

Volume

172

Peer Reviewed

yes


Share

COinS