Physics Faculty Publications
Title
Probing Cell Deformability via Acoustically Actuated Bubbles
Document Type
Article
Publication Date
2-2016
Publication Source
Small
Abstract
An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties.
The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.
Inclusive pages
902–910
ISBN/ISSN
1613-6810
Copyright
Copyright © 2016, John Wiley & Sons
Publisher
John Wiley & Sons
Volume
12
Issue
7
Peer Reviewed
yes
eCommons Citation
Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costzano, Francesco; and Huang, Tony Jun, "Probing Cell Deformability via Acoustically Actuated Bubbles" (2016). Physics Faculty Publications. 31.
https://ecommons.udayton.edu/phy_fac_pub/31
COinS
Comments
Permission documentation is on file.